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Summary. In this chapter we examine the procedure of multiple sequence alignment. We first exam-
ine the heuristic procedures commonly used in multiple sequence alignment. Next we examine
sources of ambiguity involved in the alignment procedure. We suggest that several alignment param-
eters be employed to examine alignment sensitivity. We end by presenting an experiment with humans
showing the ambiguity involved in manual alignment.

Introduction

Multiple sequence alignment is a procedure to turn unequal length sequences
into equal length character strings via the insertion of gaps. These gaps are
mere placeholders which indicate that an insertion or deletion has occurred
somewhere after the compared sequences diverged from a common ancestor,
resulting in a lack of homologous nucleotides at that position for that taxon.

Despite the existence of new methods for phylogenetic analysis that entire-
ly avoid alignments, the issue of using multiple sequence alignments (fixed
alignments) as a source for the primary homology statements for phylogenet-
ic analysis is still important for certain areas of knowledge. An investigator
may choose a fixed alignment versus a dynamic alignment, and base-to-base
correspondences versus fragment-to-fragment correspondences for several
reasons. For example, below the population level, or to study molecular evo-
lution (of both DNA and proteins), certain methods that are commonly applied
require the use of fixed alignments (see Wheeler 2002).

Three issues appear important to us in this respect. First, how multiple
sequence alignments are generated algorithmically (and the inherent problem-
atica of alignments). Second, how the available software performs alignments
(implementation). Third, how parameter sensitivity enters into exploring phy-
logenetic hypotheses at the alignment level. This last issue also applies to all
other methods of sequence comparison (i.e., optimization of DNA fragments).
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Background

The first step in any phylogenetic analysis involves some sort of pairwise com-
parisons of DNA data (or amino acids; but from here on, we will refer to DNA
data analyses). Two families of comparison methods are available: local com-
parisons, meant to search for homologous domains among sequences, such as
the BLAST family of programs (e.g., Altschul et al., 1997), and global com-
parisons, the type applied to phylogenetic inference, where the entirety of two
putatively homologous strings of DNA is compared to assign base-to-base cor-
respondences.

The fundamental method of pairwise sequence alignment was first
described by Needleman and Wunsch (1970), and extended to multiple dimen-
sions by Sankoff and Cedergren (1983). The Needleman and Wunsch algo-
rithm calculates the minimum edit distance between two DNA sequences,
which is the minimum number of transformations required to go from one
sequence to another. In its simplest incarnation, two parameters need to be
specified, the gap penalty (or indel cost: the cost assigned to insertion or dele-
tion events), and the change cost (the cost assigned to go from one base to any
other). This change cost can be categorized in many different ways, assigning
independent costs for every particular type of transformation, or assigning
costs to certain categories (i.e., transversions, transitions, etc.). These costs
need to be explicit in any algorithmic comparison, and have some lower
boundaries delimited by the triangle inequality (Wheeler, 1993). The
Needleman and Wunsch algorithm can be expressed as a minimization
process, but other optimization procedures for DNA sequence comparisons
might be used as well (e.g., maximization of base matches). The specific
mechanics of the Needleman and Wunsch algorithm have been reviewed else-
where (Wheeler, 1994), and we are not going to review the process in detail,
but just note certain relevant aspects.

In order to align two sequences of length (V- 1) and (M — 1), a matrix of
N X M cells is created, and the minimum cost path through this matrix (given
specific parameter costs) is calculated. The matrix is traversed in such a fash-
ion that only the adjacent three cells (usually the cells above, to the left, and
diagonally up to the left) are examined to determine the cost of each cell and
the most efficient path to it (Needleman and Wunsch, 1970). This means that
for each of the N X M cells, three cells are involved in the calculation of each
other internal cell. While this is manageable for two sequences (the cost of
computation being roughly proportional to the product of the sequence
lengths), and significant shortcuts are known, extensions to phylogenetically
interesting numbers of sequences are extremely computationally intensive.
The alignment matrix for n sequences would have n axes, and each cell would
require knowledge of 2" — 1 other cells. Furthermore, while the cost of span-
ning two sequences is simply the summed difference, when four or more
sequences are involved, some tree search or prior knowledge is required to
determine the alignment and its overall cost (Sankoff and Cedergren, 1983).



DNA multiple sequence alignments 109

These complicating factors have made true multiple alignment unachievable
for anything but the smallest number of taxa. Real data sets require, at least,
heuristic solutions (Wheeler, 2000b). In fact Slowinski (1998) showed that
there are 1.05 x 10'® different alignments for five DNA sequences of five
nucleotides each, and thus recommends not even attempting to perform multi-
ple sequence alignments, since any optimality criterion is “virtually guaran-
teed to fail”.

The heuristic strategy followed in multiple sequence alignment procedures
is quite simple. Since aligning two sequences is easy, the procedure adds
sequences via a “guide tree”. All programs for multiple sequence alignment in
common use today follow this idea, but differ in how they get the binary
“guide” tree, and how they add the pairwise results together to generate the
complete alignment.

Three implementations of heuristic multiple sequence alignment algorithms
that are in some use today are the CLUSTAL family (Higgins and Sharp, 1988,
1989; Higgins et al., 1992, 1996; Higgins, 1994; Thompson et al., 1994, 1997:
Jeanmougin et al., 1998), TREEALIGN (Hein, 1989, 1990), and MALIGN
(Wheeler and Gladstein, 1994, 1995). These three programs rely on guide trees
to accrete pairwise alignment. In the case of CLUSTAL and TREEALIGN, a
distance tree is calculated from all the pairwise sequence similarity scores, and
this distance tree becomes the guide tree. In the case of CLUSTAL, this is a
Fitch-Margoliash tree; TREEALIGN uses a method developed by Hein (1989,
1990). At the nodes (vertices) of the guide trees, consensus (CLUSTAL) or
quasi-optimized (TREEALIGN) single sequences are created from the aligned
pair, which is then submitted to another pairwise alignment further down the
tree. When the root of the guide tree is reached, the various gaps inserted on
the way down are placed into the sequences at the tips creating sequences of
equal length—the multiple alignment.

MALIGN also uses guide trees, but differs from the other programs in that
it examines multiple guide trees. These guide trees are generated through stan-
dard tree search procedures of tree building and branch swapping.
Furthermore, no individual sequences are created at the internal vertices, but
the partial alignment of sequences descending from that node are carried along
and aligned in a modified pairwise manner. During the search procedure, a
complete multiple alignment is generated for each candidate guide tree, and a
heuristic phylogenetic search is performed on the multiple alignment. The
entire procedure involves two levels of heuristics, one to generate the align-
ment and another to perform tree searches on each one of the alignments. The
alignment (or alignments, if multiple solutions are found) which produces the
most parsimonious phylogenetic result (i.e., lowest cost) is chosen as the
“best” multiple alignment. As a result of this search procedure, MALIGN will
frequently examine many thousands or millions of candidate alignments (usu-
ally n° for n sequences). Not surprisingly, CLUSTAL and TREEALIGN fre-
quently generate results more rapidly than MALIGN.
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Furthermore, sequence comparison can well include evolutionary models
and be based on statistical approaches. Maximum likelihood methods for
alignment of DNA sequences have been proposed (Thorne et al., 1991; Thorne
and Churchill, 1995), although these methods have not yet been applied to
phylogenetically interesting data sets.

In summary, irrespective of which program or method is used, multiple
sequence alignment is a computationally expensive technique, and only
heuristic solutions can be achieved.

Sources of ambiguity

That alignments originated from different sources might result in alternative
phylogenetic hypotheses is logical, and has also been demonstrated empirical-
ly (e.g., Wigele and Stanjek, 1995; Winnepenninckx and Backeljau, 1996). In
a recent review on DNA sequence alignments, Wheeler (1994) enumerated
three sources of ambiguity in multiple sequence alignments (sources of non-
unique alignments). An extra source of difficulty, as mentioned above, is the
necessity of heuristics in solving alignment problems. Three sources of ambi-
guity are:

Parameter variation

That different parameters can result in different alignments, and consequently
in alternative phylogenetic hypotheses, is a well-known phenomenon, first
described by Fitch and Smith (1983, see also Waterman et al., 1992; Wheeler,
1995; Morrison and Ellis, 1997: Cerchio and Tucker, 1998; Giribet and
Wheeler, 1999b). Since there is a priori no way to determine directly the
appropriate gap Or change values, more or less arbitrary decisions must be
made when choosing a particular cost regime (Giribet and Wheeler, 1999b).
An obvious solution to this problem is to examine a wide space of parameters.
For example, using a large regime of gap and change costs would show which
areas of the alignment are conserved, and which are more parameter-depend-
ent. What the investigator does with this information is another matter.

Describing the enormous parameter space that can be explored by multiple
sequence alignments, Higgins et al. (1996) stated that:

“We justify this by asking the user to treat CLUSTAL W as a data explo-
ration tool rather than as a definitive analysis method. It is not sensible to
automatically derive multiple alignments and to trust particular algo-
rithms as being capable of always getting the correct answer”.

Many investigators remove “gappy’’ areas (whether obtained automatically
or manually), appealing to the idea that these areas do not reflect true homolo-
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gies, or that the pattern of homology cannot be recognized. This could lead to
extremes in which all informative data are removed, especially if hundreds of
sequences are examined, even if they were coding genes (never underestimate
the power of mutation!). Furthermore, many times this is done because the
alignments have been generated manually, or by using bogus algorithms. Other
more objective alternatives have been proposed, such as Cull or Elision
(Gatesy et al., 1993; DeSalle et al., 1994; Wheeler et al., 1995). However, Cull
could also end up with all the information removed from the alignment.
Elision is neater in the sense that it acts as a weighting function, downweight-
ing all these positions with ambiguous alignments.

A third solution was proposed by W.C. Wheeler (1994, 1995), which is the
use of congruence with other sources of information to decide which align-
ment best explains evolution of all sources of phylogenetic evidence.
Character congruence (Mickevich and Farris, 1981; Farris et al., 1995) or topo-
logical congruence (Wheeler, 1999a) are our preferred criteria. In these cases,
no information is discarded or downweighted, which accounts for analyses
that accommodate a wider scheme of phylogenetic variation. This does not
mean that the alternative alignments should not be explored to test for phylo-
genetic stability to parameter choice. Obviously, more parameters can always
be analyzed. Another critique of the use of parameters is that the scheme of
parameters is applied uniformly to all the positions in the analyses. But as the
phylogenetic data come today, it seems the best way to account for the first
source of ambiguity in multiple sequence alignment.

Multiple order-dependent solutions

When muitiple alignments are created, whether by exact or by heuristic means,
the notion of alignment order comes into play. Heuristic multiple alignment
solutions are built typically from a series of pairwise alignments. Initially two
sequences are aligned and this result aligned to a third sequence, maintaining
the relative alignment between the first two (*once a gap, always a gap”; Feng
and Doolittle, 1987, 1990) and so on. This procedure is obviously order-
dependent. A different addition order might well yield a different alignment,
even when the exact same parameters are chosen. So, not only can different
parameter sets result in different alignments, but also the same parameter sets
might yield different alignments if a different guide tree is used. This was con-
sidered by Wheeler (1994) to be analogous to the existence of multiple opti-
mal trees in a standard parsimony phylogenetic analysis.

Multiple path-dependent solutions

The third source of alignment ambiguity is path variation. Path variation occurs
when the alignment algorithm can follow multiple paths through the alignment
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space, yielding again multiple solutions (even for the same parameter space
and for the same guide tree). Path variation occurs when the alignment can
either insert a gap or match the bases with equal cost. Every time that this hap-
pens, the number of optimal solutions multiplies, and if this happens repeated-
ly, the result is a large number of equally costly, but different alignments.

Alignments are just hypotheses of homology

Alignments are not “given static hypotheses of homology”, or any phenome-
non that we can observe in nature. This is a truth that is hard to accept for many
investigators. The same applies to particular base transformations, insertions,
deletions, etc. The path from one sequence to another, connected by a common
ancestor, may suggest such a phenomenon, but alignments of multiple taxa are
missing way too many of these events, too many terminals, and too many
ancestors (nodes). This implies that any information that we report in the form
of an alignment is the most accurate estimate of these unobserved processes,
and thus we should not be afraid to explore the solutions suggested by alter-
native alignments. Otherwise we would be fooling ourselves by believing that
we got “the” alignment.

As an example, there are several possible alignments for the following two
sequences (1) AATCGCG and (2) AACCCGG. Four of these possibilities are
shown here:

(a) AATCGCG () AATCGCG-
AACCCGG AA-CCCGG

(b) AATCGCG- (d) AATCGC-G-
AACC-CGG AA-C-CCGG

Depending on the parameter set adopted, some alignments will be “better”
(shorter) than others. For example, if we consider all transformations as equal
and assign them a cost of 1 (gap cost = 1; tv cost = 1; ts cost = 1), alignment
(a) requires three transformations (a total cost of 3), as it does alignment (b)
and (c), while alignment (d) requires four transformations (a total cost of 4).
Thus, applying this model, alignments (a), (b) and (c) are equally supported. If
we apply a second model with gap costs weighted twice as much as base trans-
formations (gap cost = 2; tv cost =1; ts cost = 1), then alignment (a) requires
no gaps, 2 transversions and 1 transition (3 base transformations; total cost of
3). Alignment (b) requires two indel events and one transition (total cost of 5),
alignment (c) requires two indel events and one transversion (total cost of 5),
and alignment (d) requires 4 indel events and no base transformations (total
cost of 8). Yet other models could be applied, resulting in favored alignments
(a) and (b) (gap cost = 2; tv cost = 2; ts cost = 1); (b) (gap cost = 1: tv cost =2;
ts cost = 1), etc. (Tab. 1).
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Table 1. Total cost of alignments (a), (b), (c) and (d) at different parameter values

gap tv ts alignment total
1 1 1 (a) 3
(b) o
(c) 3
(d) 4
2 1 1 (a) 3
(b) 5
(c) 5
(d) 8
2 2 1 (a) 5
(b) 5
(c) 6
(d) 8
1 2 1 (a) 5
(b) 3
(c) 4
(d) 4

What we are trying to illustrate with this example is the notion that the deci-
sion on which is the “best” alignment is not trivial, and certainly decisions
made “by eye” would probably choose alignment (a) versus the alternative
ones, although (b) and (c) might be as good or even better under a wide range
of parameters. This, we guess, stresses the necessity of being explicit and
repeatable, two conditions only mutually satisfied by automatic alignments.
The lack of sufficiently good algorithms to perform multiple alignments
should not be taken as a critique of a philosophically superior method.

Due to the existence of sources of ambiguity in multiple sequence align-
ments, different alignments based on different parameter sets should be
explored. With these multiple hypotheses of positional homology, phylogenet-
ic analyses increase in ‘complexity, but decrease in the degree of arbitrariness.

Experimenting with humans

In order to evaluate “manual alignments,” eight student investigators were
given a set of sequences, the “original data”, and were asked to align them. The
original data consisted of ten sequences, most starting with the motif
“AAGAAGAAT”, and all of them ending with the motif “TTTATTTTGA”.
The students knew what homology meant and were supposed to align the
sequences so that they would be equally long and have the “highest possible”
base-to-base concordance, any way they could.

The same ten sequences were submitted to ClustalW and Malign for multi-
ple sequence alignments with parameters set at gap cost = 10; change cost = 1;
gap extension penalty options off (each gap was given the same cost value, as
if they were independent). The sequences were also optimized in POY
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Table 2. Tree length of the alignment of 10 sequences

One 388
Two 362 (some bases deleted)
Three 374 (some bases deleted)
Four 367 (some bases deleted)
Five 388
Six 367 (some bases Eleleted)
Seven 362 (some bases deleted)
Eight 357 (some bases deleted)
CLUSTAL 395
MALIGN 386
POY 379

One to Eight indicate manual alignments generated by 8 students. MALIGN. CLUSTAL and POY
indicate the alignments obtained with the respective programs.

(Gladstein and Wheeler, 1997) and the “implied alignment” corresponding to
the topology optimized was compared to the other alignments. Manual align-
ments and computer-generated alignments were evaluated using the parsimony
program NONA v 2.0 (Goloboff, 1994), counting gaps as a character state (gap
cost arbitrarily set at 1) using tbr branch swapping (h1000;h/10;mult*100;).

For the manual alignments, in general a few gaps were added, but in most
cases, a few bases were removed as well, making tree-length comparisons
impossible. Of course removing bases was incorrect, but these were just exam-
ples. Tree lengths for all the alignments are given in Table 2. What we can
observe from this simple experiment is that manual alignments are unpre-
dictable. In addition, they incorporate a high degree of subjectivity and are
error-prone.

Computer-generated alignments dependent on guide trees are more parsi-
monious if several guide trees are examined (MALIGN versus CLUSTAL),
although shorter alignments might exist (implied alignment from POY).
Multiple sequencing alignment is a complicated process that requires consid-
erably large amounts of computation. Methods using a single guide tree can be
improved by doing multiple runs with different starting points, giving several
randomly generated guide trees. However, this is tedious and this is why pro-
grams such as MALIGN, which examines multiple guide trees (using multiple
random addition), are superior. Even when multiple guide trees are examined,
there is no guarantee, as in any other heuristic procedure, that the optimal
(shortest) alignment will be found. Shorter alignments can be found much
faster by outputting the implied alignment with a tree generated via DNA
direct optimization (Wheeler, 1996).
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