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Abstract

We present parsimony analyses of annelids based on the largest taxon sample and most extensive molecular data set yet
assembled, with two nuclear ribosomal genes (18S rDNA and the DI region of 28S rDNA), one nuclear protein coding-gene
(Histone H3) and one mitochondrial ribosomal gene (16S rDNA) from 217 terminal taxa. Of these, 267 sequences are newly
sequenced, and the remaining were obtained from GenBank. The included taxa are based on the criteria that the taxon must have
18S rDNA or at least two other loci. Our analyses show that 68% of annelid family ranked taxa represented by more than one taxon
in our study are supported by a jackknife value > 50%. In spite of the size of our data set, the phylogenetic signal in the deepest part
of the tree remains weak and the majority of the currently recognized major polychaete clades (except Amphinomida and
Aphroditiformia) could not be recovered. Terbelliformia is monophyletic (with the exclusion of Pectinariidae, for which only 18S
data were available), whereas members of taxa such as Phyllodocida, Cirratuliformia, Sabellida and Scolecida are scattered over the
trees. Clitellata is monophyletic, although Dinophilidae should possibly be included, and Clitellata has a sister group within the
polychaetes. One major problem is the current lack of knowledge on the closest relatives to annelids and the position of the annelid
root. We suggest that the poor resolution in the basal parts of the trees presented here may be due to lack of signal connected to
incomplete data sets both in terms of terminal and gene sampling, rapid radiation events and/or uneven evolutionary rates and long-
branch attraction.

© The Willi Hennig Society 2006.

Annelids are segmented worms that are found world-
wide in most habitats, except the aerial and the most
arid ones. Earthworms and leeches are the most familiar

class rank: Polychaeta (bristleworms), Oligochaeta
(earthworms, etc.) and Hirudinea (leeches). However,
in recent years it has become well recognized that

members of this group; however, most annelid diversity
lies within the largely marine polychaetes. Until recently,
Annelida was split into three major groups, each given
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Hirudinea is nested within Oligochaeta and that giving
both these taxa the rank of class renders the latter group
paraphyletic. These assignments have a long history and
it may be some time before Class Oligochaeta and Class
Hirudinea are eliminated. Comprehensive phylogenetic
studies using molecular sequence data and morphology
provide strong support that the “oligochaete” group
Lumbriculida is the sister group to the ectoparasitic
clade comprised of Hirudinida, Acanthobdellida and
Branchiobdellida (Martin, 2001; Siddall et al., 2001;
Erséus and Killersjo, 2004). The whole group including
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both the traditional oligochaetes and Hirudinida should
therefore be referred to ecither as Oligochaeta (Siddall
et al., 2001), or Clitellata (Martin, 2001; Erséus and
Kaillersjo, 2004). There are arguments for using either
name but we use the name Clitellata here because it
provides a connection to the actual synapomorphy
shared by leeches and oligochaetes. We apply the
vernacular name ‘oligochaetes for Clitellata to the
exclusion of Hirudinida, Acanthobdellida and Bran-
chiobdellida.

Even though the systematics of annelids has been the
object of a growing interest in the last 10 years, most
questions regarding annelid large-scale relationships
remain unanswered (for reviews see McHugh, 2000,
2005). For instance, the interrelationships and the status
of the higher polychaete clades are unsettled and under
debate. The most recent comprehensive systematization
of polychaetes proposed by Rouse and Fauchald (1997)
suggested that polychaetes comprise two major clades,
Scolecida and Palpata. The most inclusive taxa within
Palpata were Canalipalpata and the Aciculata (the latter
largely corresponding to what previously was referred to
as errant polychaetes). So far, none of the more inclusive
polychaete taxa recovered by Rouse and Fauchald
(1997) or ecarlier authors, except for Terebelliformia
(Hall et al., 2004; Rousset et al., 2004), have been
convincingly supported by molecular studies. This
incongruence between morphological and molecular
data is difficult to evaluate. Numerous recent molecular
analyses focusing on broad scale analyses of polychaete
relationships suffer from a weak phylogenetic signal
resulting in a poor resolution of basal nodes (for
instance, Rota et al., 2001; Bleidorn et al., 2003b; Struck
and Purschke, 2005). Some have suggested that a rapid
annelid radiation may explain the lack of resolution of
basal annelid nodes in phylogenetic analyses of 18S
rDNA sequences (e.g., Martin, 2001; Rota et al., 2001;
Struck et al., 2002a; Bleidorn et al., 2003a,b), but those
earlier difficulties may have arisen from low or uneven
taxon sampling (see McHugh, 2005 for a review of those
molecular studies). As suggested by Siddall et al. (2001)
and McHugh (2005), the hypothesis of a rapid radiation
of annelids as a cause of the poor resolution could only
be supported if analysis of multiple independent gene
sequences with a comprehensive taxon sampling also
yields poor resolution in basal nodes of the annelid tree.

At a general level, the monophyly of Annelida is not
well supported by anatomical features proposed to date
(Rouse and Fauchald, 1997). Three character systems
that usually are discussed include segmentation, chaetae
and nuchal organs (see Rouse and Pleijel, 2001 and
Purschke, 2002), although none of these provide unequi-
vocal evidence. This lack of morphological support has
resulted in a number of recent studies focussing on the
monophyly and delineation of annelids (Westheide et al.,
1999; McHugh, 2000; Halanych et al., 2002). The earliest

molecular study dealing with the status and delineation
of Annelida was that of Winnepenninckx et al. (1995).
They used 18S rDNA sequences to examine relationships
among protostome worms such as Annelida, Echiura,
Nemertea, Pogonophora and Vestimentifera. However,
the only two included annelids (Lanice and Eisenia) in
their study did not form a clade. McHugh (1997) and
Kojima (1998), using the nuclear gene elongation factor-
lo, found that Clitellata and Pogonophora clustered
among various polychaetes, and the former study also
found that Echiura was nested among polychaetes. Their
taxon sampling was such that the possibility of a number
of other protostome taxa also being included in Annelida
was not assessed. Brown et al. (1999) then studied
relationships within Annelida using data from three
genes and a broader taxon sample from among annelids
and other protostomes, and also found clitellates,
pogonophorans and even sipunculans nested among
annelids. Martin (2001) analyzed available sequences of
18S rDNA with the primary aim of assessing the
placement of Clitellata. He could not recover a mono-
phyletic Annelida without also including taxa referred to
Mollusca and Sipuncula. Subsequent studies including
larger numbers of protostomes continue to show taxa
from Arthropoda, Brachiopoda, Mollusca, Platyhelmin-
thes, Sipuncula and Phoronida nested among annelid
taxa (Rota et al., 2001; Bleidorn et al., 2003b; Hall et al.,
2004; Jordens et al., 2004; Struck and Purschke, 2005).
Thus, large-scale molecular studies have not been
encouraging. Morphological studies also are essential
as there are critical gaps in our knowledge about basic
anatomy of many groups (see Rouse and Pleijel, 2001).

The placement of the “root” on the annelid tree is a
related issue that deserves special attention. Clitellata
and simple-bodied polychaetes such as Questidae and
Paraonidae were suggested to be basal annelids in the
morphological analyses of Rouse and Fauchald (1997).
However, conclusions regarding morphological homol-
ogies between annelids and putative close relatives such
as mollusks are notoriously difficult to draw. To date,
molecular analyses have not settled on the root place-
ment, and no consensus is in sight. This problem, of
course, does not only relate to sister group relationships
of annelids, but also hinders our identifying many of the
major clades within annelids; we are actually working
with an unrooted tree (Rouse and Pleijel, 2003). The
position of Clitellata serves as an example. While the
monophyly of Clitellata is well supported by morpho-
logical and molecular data (see Erséus and Killersjo,
2004 and references within) and the placement of
Hirudinea as a clade well inside that group is now clear
(Siddall et al., 2004), the sister group to Clitellata itself
remains elusive. Hypothetical evolutionary scenarios
have been forwarded as evidence that the clitellates have
a derived position within a paraphyletic polychaete
grade (Nielsen, 1995; Westheide, 1997; Giangrande and
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Gambi, 1998; Purschke, 1999, 2003 Purschke et al.,
2000). Furthermore, as with the problem of rooting the
whole of the Annelida, molecular analyses of various
genes such as elongation factor-loo (McHugh, 1997;
Kojima, 1998), histone H3, U2 snRNA and 28S rDNA
(Brown et al., 1999), 18S rDNA (Erséus et al., 2000;
Martin, 2001; Rota et al., 2001; Struck et al., 2002a;
Bleidorn et al., 2003b; Hall et al., 2004), 18S rDNA, 28S
rDNA and COI (Jordens et al., 2004) and 18S rDNA
and COI (Struck and Purschke, 2005) are inconsistent
regarding which polychaete taxon is sister group to
Clitellata.

In order to (1) find the sister group of clitellates, (2)
evaluate the interrelationships and the status of the
higher polychaete clades, and (3) assess the monophyly
of annelids and to find the root of the annelid tree, we
here present analyses of the largest taxon sample and
most extensive molecular data set yet assembled to
assess annelid relationships, with two nuclear ribosomal
genes (18S rDNA and the D1 region of 28S rDNA), one
nuclear protein coding gene (Histone H3) and one
mitochondrial ribosomal gene (16S rDNA) from 217
terminals (Table 1). Of these, 267 sequences in total are
newly sequenced, and the remaining part obtained from
GenBank. Analyses were conducted with two suites of
outgroup taxa, one more restricted than the other.

Materials and methods
Taxon sampling

Terminal taxa were chosen to examine the relation-
ships of Annelida and putatively related taxa. Clitellate
taxa were selected, based on the results of Erséus and
Killersj6é (2004), in order to obtain an optimal estimate
of the root of this clade. Both “complete” (i.e., 217 taxa)
and “restricted” (i.e., omitting six outgroup taxa) data
sets comprised 211 species that uncontroversially are
considered as members of Annelida. Outgroup taxa
generally not considered to be annelids that were
included in the “complete” data set were three arthro-
pods, one brachiopod, five mollusks, two nemerteans
and three sipunculids, though the root was actually
placed with the centipede arthropod Hanseniella. The
“restricted” analysis excluded the three arthropods,
the brachiopod and two of the five mollusks and the
nemertean Micrura was used as the root. Four loci were
employed in these analyses: the nuclear small and large
ribosomal subunits (18S rDNA and D1 region of 28S
rDNA, respectively), nuclear protein-coding gene (his-
tone H3), and the mitochondrial ribosomal gene (16S
rDNA). The included taxa are based on the criteria that
the taxon must have 18S rDNA or at least two other
loci. Of the included data, 56 sequences for 18S rDNA,
78 sequences for 28S rDNA, 56 sequences for Histone

H3 and 77 sequences for 16S rDNA were newly
acquired from ecthanol preserved material; remaining
data were obtained from GenBank. All taxa included in
this study, sampling localities and GenBank accession
numbers for new sequences, as well as sequences
reported in other studies, are listed in Table 1. All data
were handled in a relational database created in
FileMaker Pro using the taxonomic binomen as the
primary key so as to prevent chimaeric concatenations
of loci in the final matrix. Taxonomic representation
across loci was 94% for 18S rDNA, 61% for 28S rDNA,
41% for Histone H3 and 53% for 16S rDNA; on the
whole the data set was 62% complete.

DNA extraction, amplification and sequencing

DNeasy Tissue Kit (Qiagen Inc., Valencia, California)
was used for tissue lysis and DNA purification. Polym-
erase chain reaction (PCR) amplification of nuclear 18S
rDNA and D1 region of 28S rDNA, mitochondrial 16S
rDNA and Histone H3 gene fragments was accom-
plished with the primers in Table 2. The 18S rDNA gene
was PCR amplified in three overlapping fragments of
about 950, 900 and 850 bp each, using primer pairs
1F-5R, 3F-18Sbi and 18Sa2.0-9R, respectively (see
Table 2). Amplifications of the D1 region of 28S, 16S
and Histone H3 yielded fragments of approximately
320, 450 and 327 bp, respectively. For a few taxa where
the universal primers 16Sar-L. and 16Sbr-H did not
work well, the primer pair 16SAnnF and 16SAnnR was
used. Loci were amplified using Ready-To-Go™ PCR
Beads (Amersham Pharmacia Biotech, Piscataway, New
Jersey). Each 25 mL reaction contained 1 uL of 10 pum
of primer pair mix, 1 pL of template and 23 pL of water.
Reactions mixtures were heated to 94 °C for 90 s,
followed by 35 cycles of 40 s at 94 °C, 40 s at a specific
annealing temperature and 45 s at 72 °C, and then a
final extension of 7 min at 72 °C on Eppendorf Mast-
ercyclers. Annealing temperature was set to 49 °C for
the 18S primer pairs 1F-5R and 18Sa2.0-9R, 52 °C for
the 18S primer pair 3F-18Sbi and for the 28S primer pair
C1’-C2, 45 °C for the 16S primer pair 16Sar-L and
16Sbr-H, 60 °C for the 16S primer pair 16SAnnF and
16SAnnR and 53 °C for Histone H3 primer pair H3af
and H3ar. The QIAquick PCR Purification Kit protocol
(Qiagen) was employed to purify amplification products.

Amplification products were sequenced in both direc-
tions. Each sequencing reaction mixture, including 1 uL
BigDye™ (Applied Biosystems, Perkin-Elmer Corpora-
tion, Foster City, CA), 1 pL of 1 pum primer and 3 pL of
DNA template, ran for 40 cycles of 96 °C (15 s), 50 °C
(30 s) and 60 °C (4 min). Sequences were purified by
ethanol precipitation to remove unincorporated primers
and dyes. Products were re-suspended in 6 pL. forma-
mide and electrophoresed in an ABI Prism™ 3730
sequencer (Applied Biosystems).
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Table 2
PCR primers used in amplification and sequencing

Name Sequence 53 Source

28S
Cr’ ACCCGCTGAATTTAAGCAT (L€ et al., 1993)
c2 TGAACTCTCTCTTCAAAGTTCTTTTIC (Lé et al., 1993)

16S
ArL CGCCTGTTTATCAAAAACAT (Palumbi et al., 1991)
BrH CCGGTCTGACTCAGATCACGT (Palumbi et al., 1991)
AnnF GCGGTATCCTGACCGTRCWAAGGTA (Sjolin et al., 2005)
AnnR TCCTAAGCCAACATCGAGGTGCCAA (Sjolin et al., 2005)

18S
1F TACCTGGTTGATCCTGCCAGTAG (Giribet et al., 1996)
5R CTTGGCAAATGCTTTCGC (Giribet et al., 1996)
3F GTTCGATTCCGGAGAGGGA (Giribet et al., 1996)
18Sbi GAGTCTCGTTCGTTATCGGA (Giribet et al., 1999)
18Sa2.0 ATGGTTGCAAAGCTGAAAC (Giribet et al., 1999)
9R GATCCTTCCGCAGGTTCACCTAC (Giribet et al., 1996)

Histone H3
H3af ATGGCTCGTACCAAGCAGACVGC (Colgan et al., 1998)
H3ar ATATCCTTRGGCATRATRGTGAC (Colgan et al., 1998)

Italics: reverse primers.
DNA sequence editing and alignment

Sequences of complementary strands were edited and
reconciled using Sequencher™ 4.1.4 (Gene Codes, Inc.,
Ann Arbor, MI). Ribosomal RNA loci were aligned with
ClustalX (Thompson et al., 1994, 1997) using its default
settings for gap opening and gap extension. Histone H3
sequences were aligned by contig in BioEdit (Hall, 1999)
as there was no requirement for insertions or deletions in
the data. Alignments are deposited in TREEBASE
(http://www.treebase.org) or are available from VR.

Phylogenetic analyses

The “complete” data set was run first with PAUP
4.0b10 (Swofford, 2002), default settings but specifying
100 random taxon addition sequences. However, each
replicate took more than 24 h to complete and after the
third replicate, the program crashed. Analyses then were
conducted for both “complete” (i.e., including all taxa)
and “‘restricted” (i.e., omitting six of the 16 outgroups)
data sets in TNT (Goloboff et al., 2003) using sectorial
searches with RSS and CSS (Goloboff, 1999), with tree
drifting and tree fusing (Goloboff, 1999) turned on,
setting the initial level to 60 and requiring that the global
optimum be found at least twice. Resulting trees were
input to TNT individually for traditional TBR branch
swapping with maxtrees set to 10 000. Jackknife support
values (jac) also were calculated with TNT.

Results

The combined data set included 3665 nucleotide
positions for 217 terminals in the “complete” data set

and for 211 terminals in the “restricted” one. For the
former, the alignment comprised 2720 variable sites, of
which 2190 were parsimony informative. For the
“complete” data set, TNT returned 144 equally parsi-
monious trees of length 33 548 with a retention index of
0.48. In Fig. 1, we present a strict consensus of the 144
trees. Owing to the peculiar positions of some putative
“outgroup taxa” nested among the polychaetes, we
reran the analysis excluding the arthropods, the bra-
chiopod and two of five molluscs, Chiton and Vampy-
roteuthis. Analysis of these ‘‘restricted” data sets
resulted in 20 equally parsimonious trees with a length
of 30 605 steps and a retention index of 0.49. The 20
trees differed only in the resolution within Sabellidae
and a clade that included the spionids Malacoceros sp.,
Polydora ciliata, P. giardi, Pygospio elegans and Scolel-
epis squamata. A strict consensus of the 20 trees is given
in Fig. 2.

In the following, the first number indicated in
parentheses corresponds to the jac value obtained from
the analysis of the “complete’ data set and the second to
the jac value from the “‘restricted” data set. Consistent
results from both analyses include the monophyly of
Aeolosomatidae (100/100), Alvinellidae (95/94), Amph-
inomida (99/100), Amphinomidae (88/78), Aphroditi-
formia  (100/100),  Apistobranchidae  (100/100),
Arenicolidae (94/96), Capitellidae (98/100), Chactop-
teridae (92/92), Dinophilidae (100/99), Flabeligeridae
(98/96), Lumbrineridae  (100/100),  Maldanidae
(100/100), Nephtyidae (100/97), Nereididae
(98/100), Onuphidaec (81/80), Opheliidac (99/100),
Oweniidae (100/100), Parergodrilidae (100/100), Pecti-
nariidae (100/100), Phyllodocidae (100/100), Pilargidae
(100/100), Sabellariidae (95/96), Scalibregmatidae
(96/98), Serpulidae (100/100), Siboglinidae (30/43),
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Fig. 1. Strict consensus tree from 144 trees obtained from the analysis of the “complete” data set. Numerals are jac values. More inclusive taxa
(usually families) are provided after the species names, and traditional major annelid clades are indicated in color as specified in the upper right
corner. Taxa in bold are polychaetes incertae sedis. Abbreviations following the names of the outgroup taxa refer to their phylum: ART, Arthropoda;
BRA, Brachiopoda; ECH, Echiura; NEM, Nermertea; MOL, Mollusca; SIP, Sipuncula.

Sigalionidae (100/100) and Syllidae (96/97). Other well
supported groups in the two analyses were Chaetoderma
and Owenidae (93/90), Amphinomida and Chaetopteri-
dae (86/86), Sabellariidae and Aphroditiformia (75/85),
Arenicolidae and Maldanidae (89/92), members of
Eunicidae and Onuphidae (99/100), and Goniadidae as
sister to Acrocirridae and Flabeligeridae (97/98). Both
analyses also agree on the non-monophyly of Clitellata
owing to the sister group relationship between Dino-
philidae (Polychaeta) and the basalmost clitellate,

Capilloventer australis (Clitellata) (0/11), and on the
non-monophyly of Ampharetidae, Cirratulidae, Dorvil-
leidae, Eunicidae, Hesionidae, Orbiniidae, Polynoidae,
Terebellidae, Trichobranchidae, all the major polycha-
ete clades except Amphinomida, and Polychaeta and
Annelida. Main disagreements between the two analyses
include a better resolution in the basal part of the strict
consensus tree of the “restricted” data set (Fig. 2) than
in the strict consensus tree (Fig. 1) of the “complete”
data set. This difference is mainly due to a higher
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of the “restricted” data set. Numerals are jac values. More inclusive taxa

(usually families) are provided after the species names, and traditional major annelid clades are indicated in color as specified in the upper right
corner. Taxa in bold are polychaetes incertae sedis. Abbreviations following the names of the outgroup taxa refer to their phylum: ECH, Echiura;

NEM, Nermertea; MOL, Mollusca; SIP, Sipuncula.

number of equally parsimonious solutions (144 trees)
obtained for the complete data set than for the restricted
data set (20 trees). Moreover, monophyly of Sabellidae
was found in the analysis of the “restricted” data set but
not in the analysis of the “complete” data set.

Discussion

This study was intended to be the most ambitious
attempt yet to resolve annelid relationships. Still, overall

resolution remains discouraging: rarely so many taxa
have been sequenced for so many nucleotides with such
sparing results. Considering that our analysis includes
deep divergences that may go back to the Cambrian (see
Rouse and Pleijel, 2001 and references within), or even
further, the relative weakness of the phylogenetic signal
for the most basal clade is not entirely surprising. More
recent divergences appear to be better supported, much
as has been observed in other studies (see Hall et al.,
2004 and references within). Of the 41 annelid family
ranked taxa represented by more than one taxon in our



V. Rousset et al. | Cladistics 22 (2006) 1-23

continued from Golfingia elongata SIP

i —l E ntillesoma antillarum S|
faC' ng Page 100 é/oeosiphon aspergl[]fus EIP
100 .
Laonice sp. e
Ch/tm%uoma serrula
36 l—L rotula sp.
11 100 700 Spirorbis spirorbis .
100 Ficapomatus epigmaticus Serpulidae
77 Galeolaria caespitosa
58 100 Hydrolides nqrve/giqa
erpula vermicularis
8 Goniada macuiltJJ
_|97 Macroc/l_llaei?fa”c/a wcarfp/s
apelligera ariinis H .
97I_96|_'_ Diplocirrus glaucus Flabe”lgerldae
V 20 - Poeobius mesere:
— Scoloplos armiger
100 o ‘quscotloplos cygnochaetus
rbinia_bioreti A
Otoina lateili Orbiniidae +
coloplos johnstonei
% Bitobrciofa unainata Questa
Protoaricia oerstedii .
Questa paucibranchiata
Glbmn%ea capensrs[
lanthyrsus pennatus i
4'_":96 Bhragmaiapomasp, | Sabellariidae
43 = Sabellaria alveolata
85 Para/ep/dcﬁotus ?’qnpq/lrfgryst
armothoe imbricata, e ;
100]_["63 Lepidonotus squamatus | Aphroditiformia
Sigalion bandaensis
77 =00 = Sthenelais boa
Epigamia magnus
Epigamia noroi
29 Mg e o
rianida pinnigera
Toceraea hanssoni
Virchowia clavata
Proceraea aurantiaca
63 Proceraea paraurantiaca
. N | Proceraea rubroproventriculata
19 P:onosylhi plg;:gera”, S 1l dae
mblyosyllis sp.
Odonto"éylﬁys gibga y
Branchiosyllis sp.
0 posyllis armillaris
83 Typosyll il
Eusyllis blomstrandi
sthodonta morena

P
Sphaerosyllis hystrix
Grubeolsgylhs limbata .
Er xogone naidina
85 T Parapionosyllis sp.
_:Parergodnlys eideri
100 Stygocapitella subterranea
Hz/bosca/ex sp.
100 ipobranchius jeffreysii
oly/?hys:a crassa
Scalibregma inflatum

22 98

| Parergodrilidae

‘ Scalibregmatidae

2E | 100 Ancistrosyllis sp H H
75 100 = Sigambra sp. B . ‘ P|Iarg|dae
7> z It\lereu?‘7 plelalg/ca . N . d d
eratocephale loveni ‘
100 Ceratonereis longiceratophora ereidiaae
I S— A
Saccocirrus sp.
Dorvgea begm/udens:s Al
arapodrilus psammophilus A
700 100 P B rotodarvilea ketersteini Dorvilleidae
orvillea erucaeformis
00 Dorvillea ¢ formis
S 100 — Schistomeringos rudolphi
65 Eunice vittata
r 45 rLEugi,ce australis L.
100 BH/S;Vzecrﬁf;tgnee"riis sp. EunICId,ae +
Aponuphis bilineata
55 H)Ea/fno%qia tubicola Onu p hidae
Eunice pennata
— Marphysa bellii
Amphicorina mobilis
100 — Il\/lyxwolabsp.
mphiglena terebro i
161 76 Pse’ftdgpotamiﬂa reniformis Sabellidae
Sabella'pavonina
100+ Sabella spallanzanii
9 Aonides oxycephala
97 Pcﬁc;/ochaetus sp.
lalacoceros sp. P
54 Pollydora ciliata Splonldae
Polydora giardi
98 = Pygospio elegans
Scolelepis squamata |
99 rilobodrilus heideri . e
700 Iriloboarilus axi Dinophilidae
- Dinophilus gyrociliatus
Capilloventer australis
Eisenia andrei )
‘—:[i/mbncus terrestris
100 12— Pontodrilus litoralis
Ll gl?sg?f}/on/? complanata
| lelobdella stagnalis : .
91 100 Blacioon geometra Hirudinida
rpobdella octoculata
Erpobdelia octoculat
28 760 i

24

100, Eclipidrilus frigidus

Rhynchelmis tetratheca X
Antarctodrilus proboscidea
Fridericia tuberosa

pUS

— 50 changes

Fig. 2. Continued

study, 28 (29 with the restricted data set) are found to be
monophyletic and 27 are supported by a jac value over
50 in both analyses. There also is a much better
resolution within some groups with a dense taxon
sampling such as among the clitellates (18 representa-
tives) and in the syllids (19).

Hirudo medicinalis

Pro,
Heronidrilus gravidus
Heterochaeta costata
Tubificoides amplivasatus

Haplotaxis cf. gordioides

volki

The most recent classification of polychaetes is based
on the morphological analyses of Rouse and Fauchald
(1997), and slightly modified by Rouse and Pleijel
(2001). However, the majority of the more inclusive
clades proposed in those classifications have never been
found to be monophyletic in molecular studies. Even
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with an increase of the taxonomic sampling and
combining the phylogenetic information of four differ-
ent molecular markers, our results still do not support
monophyly of the higher polychaetes groups as identi-
fied from morphological data.

Scolecida

The name Scolecida was first proposed by Rouse and
Fauchald (1997), for a group that was only supported by
two apomorphies, the presence of parapodia with
similar rami and the possession of two or more pairs
of pygidial cirri, though Rouse and Pleijel (2001)
concluded that it would be ““likely that further analysis
will show that it is not a monophyletic grouping”.
Scolecida, as treated by most recent authors, include
Arenicolidae, Capitellidae, Cossuridaec, Maldanidae,
Opheliidae, Orbiniidae, Paraonidae, Questidac and
Scalibregmatidae. Our study, which includes 29 repre-
sentatives covering all the family ranked taxa belonging
to Scolecida (in green in our two figures), agrees with the
previous molecular ones (e.g., Bleidorn et al., 2003b and
Hall et al., 2004) showing that Scolecida is not a
monophyletic group and should be abandoned or
redelineated, though there are some well supported
close relationships among some of these taxa. For
instance, several recent studies suggest close relation-
ships between questids and orbiniids (Erséus et al., 2000;
Rota et al., 2001; Bleidorn et al., 2003a,b), possibly
(with weaker support) with Questa nested within the
orbiniids (see Bleidorn, 2005). Bleidorn et al. (2003b)
also suggested transfer of Travisia from Opheliidae to
Scalibregmatidae, a result that was corroborated by Hall
et al. (2004) and Persson and Pleijel (2005). Morpho-
logically, in terms of its body shape, distinct epidermis,
and lack of a mid-ventral groove, Travisia resembles
members of Scalibregmatidac. However, our analyses
with new sequences for 7Travisia contradict a close
relationship to Scalibregmatidae, and provide strong
support for the monophyly of the traditional Opheliidae
with Travisia included. Bleidorn et al. (2003b), Hall
et al. (2004) and Persson and Pleijel (2005) used the
same sequences of Travisia, whereas ours are based on
newly collected specimens. For this reason we did not
include the existing 18S rDNA sequence from GenBank.
It cannot be excluded that a misidentification is involved
and the matter warrants further investigation. With
reference to other scolecid taxa, we found Arenicolidae
to be the sister group to Maldanidae (89/92), a
hypothesis with a long taxonomic history (Fauchald
and Rouse, 1997). This result also has more recent
morphological and molecular support (Bartolomaeus
and Meyer, 1997; Rouse and Fauchald, 1997; Bleidorn
et al., 2003b; Hall et al., 2004; Bleidorn, 2005; Persson
and Pleijel, 2005). Concerning the particular position of
the (Arenicolidae, Maldanidae) clade, our analyses

suggest a sister group relationship to Terebelliformia
(including Alvinellidae, Ampharetidae, Pectinariidae,
Terebellidae and Trichobranchidae), a result found also
in the previous molecular studies of Brown et al. (1999)
and Hall et al. (2004). However, our results concerning
this are far from conclusive owing to a very weak
support (18/20) for this relationship and the unexpected
position of pectinariids outside of the Terebelliformia
clade.

Palpata

Palpata was formulated by Rouse and Fauchald
(1997) for a group containing virtually all polychaetes
except Scolecida and a few taxa incertae sedis. Given
that the presence of palps and a limited peristomium
were the only synapomorphies supporting this taxon, it
is not surprising that later analyses (including ours) have
not recovered the taxon. Palpata, following Rouse and
Fauchald (1997), contains two major clades: Aciculata
and Canalipalpata.

Aciculata

On the basis of parsimony analyses of morphological
data, Rouse and Fauchald (1997) recognized Aciculata
(the name referring to a particular chaetal type called
aciculae, one of the apomorphies for the group). This
group constituted one of the most strongly supported
more inclusive taxa in their analyses with several
identifiable synapomorphies (ventral sensory palps,
prostomial antennae, dorsal cirri, ventral cirri, single
pair of pygidial cirri, segmental organs). In agreement
with all molecular studies done so far, our analyses,
which involve a total of 67 representatives of the
Aciculata clade, do not support the monophyly of the
group. Aciculata was divided by Rouse and Pleijel
(2001) into three major clades: Amphinomida, Eunicida
and Phyllodocida.

Amphinomida

Amphinomida, according to Rouse and Pleijel (2001),
contains approximately 200 nominal species, and com-
prises two major groups: Amphinomidae (known as
fireworms) and Euphrosinidae. The monophyly of
Amphinomida is supported in all of the morphological
analyses of Rouse and Fauchald (1997) and by a
number of morphological apomorphies (e.g., chaetal
structure and composition, proboscis shape and pres-
ence of caruncle). Our molecular analyses, which inclu-
ded six representatives of Amphinomida (five
amphinomids and one euphrosinid), agree with the
morphological hypotheses and provide strong support
for the monophyly of this taxon (99/100). Our results
also support monophyly of Amphinomidae (88/78), in
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that euphrosinids have a basal position in the group.
Rouse and Fauchald, 1997) close relationship between
Eunicida sensu Rouse and Pleijel (2001) and Amphino-
mida was not supported here; instead we obtained the
highly unexpected sister group relationship between
Amphinomida and Chaetopteridae (86/86). However,
there is no morphological support whatsoever for this
relationship, and we regard this result as suspicious.

FEunicida

Eunicida typically includes polychaetes with a ventral
muscularized pharynx, ventral mandibles, dorsal max-
illae and with the peristomium forming one or more
rings (Rouse and Fauchald, 1997). This group, as
formulated by Rouse and Pleijel (2001), includes Dor-
villeidae (dinophilids included), Eunicidae, Hartmani-
ellidae, Histriobdellidae, Lumbrineridae, Oenonidae
and Onuphidae. Our study included a total of 17
representatives, including three dinophilids, six dorville-
ids, six eunicids and two lumbrinerids. Whereas most
members of Eunicida are unequivocally supported by
morphological characters (a ventral pharyngeal organ
with a complex jaw apparatus), our results indicate that
they are scattered among three separate clades, one with
lumbrinerids, one with eunicids, onuphids and most
dorvilleids, and one with dinophilids and the dorvilleid
Pettiboneia (see Figs 1 and 2). Part of this non-monop-
hyly of Eunicida accords well with prior studies (Struck
et al., 2002b; Hall et al., 2004; Struck and Purschke,
2005), although on morphological grounds we find it
difficult to accept that taxa such as lumbrinerids and
eunicids are not closely related. As to Eunicidae and
Onuphidae, Fauchald (1992) suggested that the special
jaw asymmetry and aragonite mineralization constitute
two apomorphies, and a sister group relationship
between the two was advocated by Orensanz (1990).
Several recent phylogenies (Struck et al., 2002b; Hall
et al., 2004) have corroborated the monophyly of this
group; however, all three of these studies also indicated
that the recognition of Onuphidae as a family ranked
taxon makes Eunicidae paraphyletic. In contrast, Rouse
and Fauchald (1997) showed a sister group for Onuphi-
dae with (Eunicidaec (Lumbrineridae, Dorvilleidae)).
Our results contradict the latter hypothesis and confirm
the close relationship between Eunicidae and Onuphidae
(99/100), further corroborating that the onuphids con-
stitute a derived clade within the eunicids.

The interstitial and simple-bodied dinophilids have
been viewed as members of Eunicida with a close
relationship to the dorvilleids (see Rouse and Pleijel,
2001 and references within). Struck et al. (2002b)
suggested that dinophilids are not a derived clade within
Dorvilleidae and even not the sister group of any
eunicidan taxon, and provided additional evidence for
this in a more recent study (Struck and Purschke, 2005);

the actual position of dinophilids, however, remained
uncertain. The present result agrees that Dinophilidae
are not a dorvilleid clade and are not sister to or member
of Eunicida, instead it is sister to the aquatic clitellate
Capilloventer, with both of these as sister to remaining
Clitellata; albeit with very low jac support (see also
further below under “Clitellata’). As to the dorvilleids,
we found five of the six included ones to form a clade
(12/65) that is sister to Eunicidae (incl. Onuphidae). The
sixth dorvilleid, Pettiboneia urciensis, instead is sister to
lumbrinerids. The polyphyly of Dorvilleidae and the
placement of P. wrciensis agree with Struck et al.
(2002b). From a morphological point of view this is
surprising, as Pettiboneia has many characters in com-
mon with the other dorvilleids, and possibly the
sequences from this taxon should be re-examined.

Phyllodocida

Rouse and Fauchald (1997) presented strong support
for the monophyly of Phyllodocida (anterior enlarged
cirri, an axial muscular proboscis, ventral position of
sensory palps, compound chaetae with a single ligament,
lack of dorsolateral folds). However, as with results
from other molecular studies (Brown et al., 1999; Struck
et al., 2002a,b; Bleidorn et al., 2003a,b; Hall et al., 2004;
Struck and Purschke, 2005), Phyllodocida, represented
in our study by 43 terminal taxa, is not monophyletic.
Based on the morphological cladistic analysis of Pleijel
and Dahlgren (1998), Rouse and Pleijel (2001) recog-
nized two clades within Phyllodocida: Aphroditiformia
and Nereidiformia.

The monophyly of Aphroditiformia, scale-worms, is
strongly supported by the present molecular data
(100/100) with Polynoidae forming a grade owing to a
derived position for Sigalionidae. The monophyly of
scale-worms is in agreement with previous morphologi-
cal studies (see Rouse and Pleijel, 2001 and references
within), although two recent studies by Wiklund et al.
(2005) and Struck et al. (2005), the former based on 18S
rDNA, COI and morphology, and the latter on the same
two genes, both show that Pisionidae (not included in
the current analysis) are scale-worms with reduced scales
and placed within Sigalionidae. Furthermore, either of
these two studies agrees with our results that Polynoidae
is paraphyletic.

In contrast to Aphroditiformia, our results contradict
the monophyly of Nereidiformia as currently delineated,
insofar as the members are scattered among five
different clades (see Figs 1 and 2). Interestingly, our
analyses suggest that pilargids form a clade with
nereidids (70/72), calling into question the suggested
close relationship between Pilargidae and Syllidae
envisaged earlier (Fitzhugh and Wolf, 1990; Glasby,
1993). Pleijel and Dahlgren (1998) instead suggested that
they are sister to a group, including Chrysopetalidae,
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Hesionidae and Nereididae, although this latter group
was not recovered here. Regarding other Phyllodocida,
Boggemann (2002) in a revision of Glyceridae (blood-
worms), indicated a sister group relationship between
Glyceridae and Goniadidae, and Rouse and Pleijel
(2001) treated them as the single unit Glyceriformia.
However, this is not supported by our current analyses
where Goniada with high support (97/98) comes out as
sister to Acrocirridae and Flabeligeridae, a relationship
that does not have precedent in the published literature
to date. From a morphological point of view this is
highly surprising, and the sequence data for Goniada
may require further attention. In a recent study based on
18S rDNA and morphological data (Worsaae et al.,
2005), the monophyly of Glyceriformia was not recov-
ered either, although in that case they were closely
related, such that Glyceridae was sister to Phyllodoci-
dae, Goniadidae and Sphaerodoridae. Regarding Phyll-
odocida, all molecular analyses accomplished so far
(including this study) suffer from sparse sampling in
such speciose groups of polychaetes like Hesionidae (150
nominal species), Nereididae (500 nominal species) and
Phyllodocidae (500 nominal species). This stands in
contrast to the recently analyzed and revised (Nygren
and Sundberg, 2003; Nygren, 2004) large group Syllidae
(over 800 nominal species), where a much denser
sampling provides high support values for virtually all
clades.

Canalipalpata

Canalipalpata was proposed by Rouse and Fauchald
(1997) for an inclusive group of polychaectes that
encompasses about half of the described polychaete
species. This clade is supported by a single apomorphy,
the presence of grooved palps, and it is not surprising
that the monophyly of Canalipalpata is not found by the
present molecular data and has never been recovered in
any molecular study done so far. Within Canalipalpata,
three major clades were identified by Rouse and
Fauchald (1997): Spionida, Sabellida and Terebellida.

Spionida

Among the three groups recognized in Canalipalpata,
Spionida was the best supported clade in Rouse and
Fauchald (1997), based on the presence of a pair of
peristomial grooved palps, nuchal organs forming pos-
terior projections, and anterior excretory nephridia and
posterior segmental organs for gamete release. Here,
Spionida is represented by two apistobranchids, six
chaetopterids, one magelonid and eight spionids. Our
analyses failed to recover a monophyletic Spionida. In
both trees (Figs 1 and 2), the members are scattered in
five different clades. Concerning the higher taxa belong-
ing to Spionida, the main interesting result is the well

supported monophyly of Chaetopteridae (92/92). This
result was expected considering the particular morphol-
ogy of the chaeptopterids, including a body with three
highly characteristic body regions with differentiated
parapodia. We conclude that the status of Spionida
merits particular attention, especially relating to spio-
nids, which is a highly speciose and diverse group of
polychaetes with about 450 described species.

Sabellida

According to the classification of Rouse and Fauch-
ald (1997), Sabellida contains Oweniidae, Sabellariidae,
Sabellidae, Serpulidae and Siboglinidae. The fusion of
the prostomium with the peristomium constituted the
only apomorphy supporting this grouping. Our analyses
do not support the monophyly of Sabellida and instead
show all five family ranked taxa scattered across the
trees, with none particularly close to one another.
However, the monophyly of all families within Sabellida
is recovered in our analyses, except for Sabellidae, which
is monophyletic only in the “restricted” analysis
(Fig. 2), though this is recovered as monophyletic in
the jac tree of the “‘complete” analysis (result not
shown). In a recent cladistic analysis using morpholo-
gical and molecular (18S rDNA and 28S rDNA) data,
Rousset et al. (2004) found a sister group relationship
between Oweniidae and Siboglinidae, whereas Bleidorn
et al. (2003b) and Hall et al. (2004) using 18S rDNA
data found an unexpected close relationship between
Oweniidae and Apistobranchidae (Canalipalpata, Spi-
onida). Our analyses are not congruent with any of these
results, showing that Owenidae with the aplacophoran
mollusk Chaetoderma form a surprising well supported
clade (93/90), and that Siboglinidae is close to Chiton
(Mollusca) in the “complete” data set. The robust
grouping between Chaetoderma and Oweniidae, two
taxa showing long branches in our tree, may be the
result of a long-branch attraction (LBA) phenomenon.
The sister group to Siboglinidae has not been convin-
cingly inferred in any analyses using only molecular data
done so far (Bleidorn et al., 2003a,b; Hall et al., 2004;
Struck and Purschke, 2005), and although we analyzed a
very large data set, our results concerning this issue are
still weak and elusive. It is more surprising that our
results do not confirm the morphologically well estab-
lished close relationships between Sabellidae and Serp-
ulidae (see Rousset et al., 2004 and references within),
and show consistently that Sabellariidae (sandmason or
honeycomb worms) are sister to a group containing
Aproditoidea plus Sigalionidae (75/85). Neither of these
results can be considered as reliable. Until now, the
analyses based on only molecular data (including this
one) have failed to properly assess the interrelationships
within Sabellida, probably suffering from a combination
of weak phylogenetic signal and artifacts (as LBA). It
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seems that a combined analyses using morphological
and molecular data, as the one by Rousset et al. (2004),
is promising and might be a way to overcome or
evaluate some potential artifacts (see Bergsten, 2005).

Terebellida

Terebellida, as delineated by Dales (1962), includes
Ampharetidae, Pectinariidae and Terebellidae, all poly-
chaetes having multiple grooved palps. Thereafter,
Terebellida was expanded by Rouse and Fauchald
(1997) to include taxa that also have a single pair of
palps (e.g., Acrocirridae, Cirratulidae, Flabeligeridae).
Our taxonomic sampling included 40 terminal taxa
belonging to Terebellida, with representatives from all
the family ranked taxa. Although Rouse and Fauchald
(1997) identified several synapomorphies for this overall
grouping, our results indicate that it is polyphyletic, with
the members scattered in six different clades (see Figs 1
and 2). This is also in agreement with recent studies
(Hall et al., 2004; Rousset et al., 2004). Using morpho-
logical and molecular data, Rousset et al. (2004) showed
that the synapomorphies previously identified for Tere-
bellida are highly homoplastic. Rouse and Pleijel (2001)
recognized two subgroups within Terebellida: Cirratul-
iformia and Terebelliformia. Cirratuliformia contains
Acrocirridae, Cirratulidae, Ctenodrilidae, Fauveliopsi-
dae, Flabeligeridae (including Poeobius) and Sternaspis.
The group was delineated to include taxa with a single
pair of grooved palps (with the exception of some
Cirratulidae with seemingly multiple palps, and Cte-
nodrilidae and Fauveliopsidae without palps). Our
analyses do not support the monophyly of Cirratulifor-
mia. However, we find an interesting sister group
relationship between Sternaspis and Fauveliopsidae
[although poorly supported (57/52)], confirming the
morphological results of Rouse and Pleijel (2003) and
the putative homology between the ventral shields in
Sternaspis and Fauveliopsis. Our results provide also
strong support for a sister group relationship between
Acrocirridae and Flabeligeridae (99/97), and corrobor-
ates the results of Rouse and Pleijel (2003) and Burnette
et al. (2005) that Poeobius (Poeobiidae) is nested within
Flabeligeridac. Owing to the morphological similarity
between Acrocirridae and Cirratulidae (as anterior
branchiae and anterior pair of segmental organs and
paired palps), some authors (see Rouse and Pleijel, 2001)
argued that the sister group for Acrocirridae could be
within Cirratulidae. Rouse and Pleijel (2003) also
demonstrated that Flabeligeridae may also be close to
Acrocirridae and so that both could be nested in
Cirratulidae. Our results do not show an acrocirrid
and flabeligerid plus cirratulid relationship, but instead
agree with Banse (1969) who showed that Acrocirridae
in fact share more features with Flabeligeridae (such as
the structure of the epidermal papillac and the com-

pound hooks) than with Cirratulidae. Terebelliformia
(also sometimes referred to as Terebellomorpha), as
treated by recent authors (see, for example Rousset
et al., 2003; Glasby et al., 2004), includes Alvinellidae,
Ampharetidae, Pectinariidae, Terebellidae and Tricho-
branchidae. Terebelliformia, in contrast to Cirratulifor-
mia, was recovered in our trees (admittedly with very
low support of 20/24), but only at the exclusion of
Pectinariidae. Monophyly of Terebelliformia has previ-
ously been established on the basis of morphological
characters, including presence of neuropodial uncini, a
looped gut, anterodorsal branchiae, non-eversible vent-
ral pharyngeal organ (Rouse and Fauchald, 1997),
DNA sequence data (Colgan et al., 2001) and a com-
bination of morphological and molecular data (Rousset
et al., 2004). It is noteworthy that using only 18S rDNA
sequences, Hall et al. (2004) faced the same difficulty
concerning the placement of pectinariid Pectinaria
dodeka. In that study Pectinaria dodeka exhibits a long
branch (see Hall et al., 2004, figs 1 and 2) and was
placed within the terebelliforms in the maximum like-
lihood analysis, whereas it is close to the myzostomes (a
clade that has also very long branch) in the parsimony
analysis. In our study, we have only 18S sequences for
the three pectinariids included, and our results indicate
that the pectinariids are the sister group to the meiofa-
unal polychaete Protodrilus purpureus (Canalipalpata,
incertae sedis), a taxon with a long branch. The problem
with the position of Pectinariidae may be that parts of
18S sequences have evolved rapidly and thus are more
subject to long-branch attraction. However, they are
morphologically distinct from the other terebelliforms
(Alvinellidae, Ampharetidae, Terebellidac and Tricho-
branchidae) so the possibility that the putative synapo-
morphies may be convergence may have to be
considered. For instance, the uncini found in pectinar-
iids are very similar to those seen in chaetopterids and
sabellids as well as to those of terebelliforms.

With reference to relationships within Terebellifor-
mia, few relationships show any support and more
restricted analysis is probably needed. However, cur-
rently Artacama is placed in Terebellidae and Artaca-
mella is in Trichobranchidae. However, both these
groups show an extraordinary peristomial lower lip that
has become a “proboscis’ that is used for burrowing in
sediment. For this reason, when Hartman (1955) first
erected Artacamella she placed it with Artacama in the
terebellid subfamily Artacaminae. Subsequently Hutch-
ings (1977) and Holthe (1977) noted similarities between
Artacamella, various trichobranchids. These were the
long-handled thoracic hooks found in Artacamella and
trichobranchids, and similarities of the prostomium and
peristomium. Both authors recommended Artacamella
be moved to Trichobranchidae. This separation of
Artacama and Artacamella implies then that the remark-
able protrusible proboscis is a convergent feature. The
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results here, however, show that Artacama and Artaca-
mella form a clade, albeit with low support and that
further investigation is warranted.

Clitellata

With the exception of the position of dinophilids, the
monophyly of Clitellata is corroborated in our trees
(although there is no jac support for it). Based on
morphology, this group is supported by several syna-
pomorphies, such as a restriction of gonads to some
anterior segments, hermaphroditism, sperm ultrastruc-
ture, direct development, relocation of the brain from
the prostomium into a more posterior position and, of
course, the clitellum (see Rouse and Fauchald, 1997 and
references within), and the group has also been recov-
ered in several previous molecular studies (e.g., Rota
et al., 2001; Struck et al.,, 2002a,b; Bleidorn et al.,
2003a; Erséus and Kaillersjo, 2004; Jordens et al., 2004;
Struck and Purschke, 2005). As to dinophilids in our
trees, they are the sister to Capilloventer (no jac
support), and these two together constitute the sister
to the remaining clitellates. Struck and Purschke (2005)
recently demonstrated that dinophilids are not members
of Eunicida, and a close relationship between dinophi-
lids and clitellates was previously suggested by one of
the analyses by Hall et al. (2004); in spite of the absence
of support we believe this issue merits closer examina-
tion.

The actual position of Clitellata within Annelida
remains highly uncertain. Two main hypotheses have
been proposed about the position of clitellates, either
that they are sister to a monophyletic Polychacta or a
derived taxon within the polychaetes (see Purschke, 2002
for a review). On the basis of hypotheses of either a
limnetic (Clark, 1969; Timm, 1981; Brinkhurst, 1984,
1994; Brinkhurst and Nemec, 1987; Omodeo, 1998) or
terrestrial origin of oligochaetes (Westheide, 1997;
Purschke, 1999; Purschke et al., 2000; Purschke, 2002,
2003), various polychaete groups have been regarded as
being closely related to Clitellata. For instance, Timm
(1981), arguing for a limnetic origin of oligochaetes,
proposed that Aecolosomatidae, minute worms living
almost exclusively in freshwater habitats, are closely
related to Clitellata.

Constraining Clitellata to be monophyletic requires
an addition of five steps to the tree in Fig. 2, but this
then leaves the group again without an obvious sister
taxon outside of Capilloventridae. More strongly, our
results reject a close relationship between Clitellata and
Aeolosomatidae, confirming earlier molecular and mor-
phological studies (see Struck and Purschke, 2005 and
references within), a constrained sister group relation-
ship between these two taxa requires 15 additional steps.
Purschke (1999), proposing that the first clitellates were
terrestrial, studied whether ‘““clitellate characters’ are

present in the terrestrial or semiterrestrial polychaetes
Hrabeiella periglandulata and Parergodrilidae (Parergo-
drilus heideri and Stygocapitella subterranea) as well. He
found that these polychaetes have many features in
common with the Clitellata but, adopting the earlier
view (see for example, Rota, 1998) concluded that these
similarities have arisen by convergence. Later, Purschke
(2003) investigated H. periglandulata and the clitellate
Enchytraeus minutus for potential homologies of the
dorsal pharynx. He found that similarities between
H. periglandulata and Clitellata are greater than between
any of these and Parergodrilidae, and concluded that
there is strong evidence for a close relationship between
the former two taxa. However, our results as well as
other molecular studies (see Jordens et al., 2004 and
references within) neither support a position of Clitellata
close to H. periglandulata, nor to Parergodrilidae; a
constrained sister group relationship between Clitellata
and H. periglandulata would require 20 extra steps, that
between Clitellata and Parergodrilidae 12 extra steps
(though the latter is reduced to six steps if Dinophilidae
is allowed to remain sister to Capilloventer).

Monophyly and the root position of Annelida

The present analyses neither support the monophyly
of Annelida nor that of Polychaeta. Indeed, our results
indicate delineation problems with the annelids, show-
ing several other protostomes as nested among the
polychaetes. We are not the first to face this problem. In
the majority of molecular studies dealing with the
interrelationships of the major groups of annelids, some
taxa of Arthropoda, Brachiopoda, Mollusca, Platyhel-
minthes, Sipuncula and Phoronida were also found as
part of an annelid ingroup (Rota et al., 2001; Bleidorn
et al., 2003b; Hall et al., 2004; Jordens et al., 2004;
Struck and Purschke, 2005). At least some of these
positions are likely due to a combination of tree
reconstruction artifacts (such as LBA) and a lack of
phylogenetic signal at the basis of the annelid tree,
possibly caused by rapid radiation at the beginning of
the history of annelids and mollusks (see, e.g., Balavoine
and Adoutte, 1998 and Giribet, 2002).

However, for Echiura, in particular, there is growing
evidence supporting a position within Annelida. The
treatment of a separate phylum Echiura has been
sustained mainly by the fact that echiurans are unseg-
mented. In their morphological analyses, Rouse and
Fauchald (1995, 1997) scored segmentation simply as
being absent, while Nielsen (1995, 1997) argued for a
secondary loss of segmentation in this group. Purschke
et al. (2000) also pointed out that a sister group
relationship between echiurans and annelids should be
viewed with caution, considering the problematic assess-
ment of absent characters (i.e., here absence of segmen-
tation in echiurans). Using elongation factor-la
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sequence data, McHugh (1997) found that echiurans are
derived annelids, confirming Nielsen’s hypothesis. How-
ever, Brown et al. (1999) found Echiura to be sister
group to annelids in their combined analysis of three
genes, though its position varied on the individual genes.
Nevertheless recent studies of the organization of the
nervous system (Hessling, 2002; Hessling and Westhe-
ide, 2002) also gave further evidence for regarding
Echiura as an annelid group, although its sister taxon
remains to be found. Using 18S rDNA data, Bleidorn
et al. (2003a,b) and Hall et al. (2004) consistently found
echiurans to be nested within polychaetes with a close
affinity to Capitellidae (Scolecida). Our results partly
confirm this; in the “complete” analysis (Fig. 1), they
are the sister to capitellids, although the support for this
is low (30) and in the “restricted” analysis (Fig. 2), they
are also close to capitellids. Thus, although increasingly
from a morphological point of view, a derived position
of Echiura within Annelida needs further assessment
with extended taxon and sequence sampling.

Even with the exclusion of putative outgroups (i.e.,
the restricted data set), our analysis failed to recover the
monophyly of Annelida (see Fig. 2). Rouse and Pleijel
(2001, 2003) pointed out that the rooting of the annelid
tree is a major problem in animal systematics. So far,
large-scale molecular studies including the present one
have not been very encouraging; we lack data (or
analytical methods) to deal with such deep divergences
and therefore also knowledge about the closest relatives
to annelids. As a result we are at present unable to
specify a root position on the annelid tree.

Conclusions

Analyses of deep evolutionary relationships have
never been easy, especially not when it concerns the
evolution of diversified groups such as Annelida, and
when using “‘limited” samples of taxa and data. Our
results corroborate (or at least fail to refute) the
monophyly of a vast majority of the annelid families
represented by more than one terminal taxon in the
study. It also provides new molecular support for
some particular close relationships previously estab-
lished only on the basis of morphological characters.
However, although this is the largest data set com-
piled and analyzed for the annelids, our results
regarding the delineation and resolution of the major
clades of annelids are still ambiguous. Our analyses
reveal that the more inclusive polychaete clades
established on the basis of morphology by Rouse
and Fauchald (1997), except Amphinomida and Aph-
roditiformia, are yet not supported by sequence data,
underlining the need for further work. Concerning the
sister group of Clitellata, there is as yet no clear
candidate; earlier morphological hypotheses (suggest-

ing, e.g., Aeolosomatidae, Hrabeiella, Parergodrilidae
or Questa) are not supported.

Contrary to our expectation, a dense taxon sampling
did not provide a notable improvement of the resolution
in the deepest part of the annelid tree. We could neither
support the monophyly of Annelida nor that of Poly-
chaeta. This failure, i.c., the lack of phylogenetic signal
in the deepest part of the tree, can be interpreted as
support to the hypothesis of a period of fast diversifi-
cation during the Cambrian suggesting an “‘explosive
radiation” of annelids (for instance, Balavoine and
Adoutte, 1998; Giribet, 2002; Conway Morris, 2003). A
combination of the very short branches resulting from a
period of fast evolution, combined with differences in
evolutionary rates in other parts of the tree, may be the
cause of our difficulties with the deepest clades of
Annelida. As morphological data are less prone to LBA
artifacts, we suggest a future approach that uses
morphological and molecular data in combination for
the analysis of higher-level annelid relationships, but
this will also require further studies on particular issues
at lower taxonomic levels (see, e.g., Burnette et al., 2005;
Bleidorn, 2005; Worsaae et al., 2005). Nuclear ribosom-
al loci, in particular 188, still appear to be useful, and
taxon sampling for this gene should be extended for
several polychaete groups, especially for those for which
only limited information is available (such as Phyllod-
ocidae or Spionidae). Needless to say, however, other
markers are still badly needed to add information to the
existing ribosomal data set.
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