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INTRODUCTION

The phylogenetic analysis of DNA sequences, like that of all other comparative
data, is based on schemes of putative homology which are then fested via
congruence to determine synapomorphy schemes and cladistic relationships.
Unlike some other data types, however, the matrix of putative homologies or
“characters” is not directly observable. When sequences are unequal in length,
the correspondences among sequence positions are not preestablished and some
sort of procedure is required to determine which positions are “homologous.”
This is the traditional province of multiple sequence alignment (= alignment
here). Alignment generates a collection of column vectors through the insertion
of gaps, which form the character set. Whether accomplished manually, or via
some computational algorithm, these characters are then submitted to
phylogenetic analysis in the same manner as other forms of data. This scheme of
correspondences or putative homologies has two salient features. First,
alignment precedes the phylogenetic analysis (i.e., cladogram search) and is
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never revised in light of systematic hypotheses. Second, alignment-based
homology schemes rest on a notion of base-to-base homology where individual
nucleotide bases transform among five states (A, C, G, T/U, and gap) within a
smgle character. Two methods have recently been proposed (“Optimization-
Alignment,” Wheeler, 1996 and “Fixed-State Optimization,” Wheeler, 1999)
which avoid multiple alignment altogether and question these two tenets of
sequence analysis. Although these approaches are parsimony methods, and rely
on testing homology through synapomorphy, they differ in the entities they
propose for testing and this has implications for the interpretation of DNA
sequence homology.

In discussing these concepts, a shorthand will be used. To describe those
correspondences among states frequently referred to as putative homologies, the
lowercase “homology”™ will be used. To describe those correspondences that
have been tested through congruence on a cladogram (i.e., synapomorphy), the
uppercase “Homology” will be used. The discussion here is mainly concerned
with methods of deriving homology statements, but all of these would then be
tested with other data to determine which homologies are Homologies.

STATIC VERSUS DYNAMIC HOMOLOGY

The standard precursor to the phylogenetic analysis of DNA sequences is
alignment. This procedure takes the unequal length strings of nucleotide bases
and inserts place-holding gaps (“-”) to make the corresponding {homologous)
bases line up into intelligible columns. These columns (characters) comprise the
data used to reconstruct cladograms. However this alignment is created, once
phylogenetic analysis has begun, it will not be revised. That is, the homologies
explicitly defined in the alignment will not be reexamined during the cladogram-
search process.

Consider four sequences: I GGGG, II GGG, I GAAG, and IV GAA. An
alignment can be generated to be supplied to standard phylogenetic analysis. In
this case, insertion-deletion events are given a cost of two and base substitutions
one. The most parsimonious (minimum cost) cladogram relating these four taxa
would be that which holds I and II to be sister taxa with an overall length of six
(1 indel and 4 base changes—Fig. 1.) Given this alignment, the two other
phylogenetic scenarios are less favored (7 and 8 steps). There is another
alignment, however, which generates the same minimum length for topology (((I
IIT) 1) IV) yet yields the same length (6 steps) for one of the other two possible
topologies (Fig. 2). Using this alignment, two of the topologies are equally
parsimonious.

13. HOMOLOGY AND DNA SEQUENCE DATA 305

Topolegy
Alignment (T MHUniv) (@ IDmIy) (@ Iv) mIm
I GGGG 7 6 8
O -GGG
oI GAAG
IV --GAA

Tnsertion-Deletion events cost 2
Base changes cost 1

FIGURE 1 Possible alignment for four simple sequences and the cladogram cost (Iength) for the
possible topologies for these taxa.

The point of this example is that the alignment process yields static
homology schemes which is not optimized for any particular topology. Once the
alignment is defermined, all testing of the alignment itself stops. Although
homologies are tested on each cladogram, there may be no single homology
matrix which optimizes Homology (yields the most parsimonious result) for each
cladogram. In order to give each topology its shortest length, homologies need
to be generated which are optimal for that particular topology. It is this need
which motivates the method of “Optimization-alignment” (Wheeler, 1996).

Topology
Alignment @ I I vy (@ Ipmiv) (@ MIHIm
GGGG 7 6 8
-GGG
GAAG
-GAA

L ERE"

GGGG 6 6 8
GGG—-
GAAG

IV GAA-

=N

Insertion-Deletion events cost 2
Base changes cost 1

FIGURE 2 Comparison of the implications of two different alignments on the cladogram costs for
the sequences in Fig. 1.
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Seq.1 Seq.2 Seq.3

Seq. 1 0 Ca Ca
Seq. 2 Ciz 0 Cs2 Cij=Ci
Seq.3] Cun Cxz 0

FIGURE 5 Matrix of minimum transformation cost between sequence pairs.

When employing blocks of contiguous sequence as characters, with
observed sequences as states, dynamic programming methods must be used o
optimize cladograms and determine their length. The procedure is identical to
the optimization of Sankoff-style characters (“step-matrix” characters), just
modified for large numbers of states (ngates < Btaxa)- This approach relies on
the postulate that only observed sequences may be optimized to hypothetical
ancestors. This restricts the possible world of reconstructed sequences, but also
requires that these sequences exist. Each sequence becomes a state in an
extremely complex character. The first step in the optimization procedure is the
determination of the transformation cost matrix among all the states. This is
defined as the minimum transformation cost (including all forms of base
substitutions and insertion-deletion costs) between each pair of states (Fig. 5).
Once these transformation costs are known, standard dynamic programming
implicitly examines the assignment of each of these states fo each internal node
and determines the optimal set of states and cladogram length (Fig. 6).
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Given that the cladogram length is based on nucleotide sequence, it might
seem strange to say that the bases themselves are not homologous. This effect is
derived from the pairwise nature of the character transformation matrix.
Consider three sequences I AAATTT, I TTT, and III AAA.  When
transformation costs are determined, the first “T” in sequence II (position 1)
corresponds with the first “T” of sequence I (position 4). This same “T” in
sequence I also corresponds with the first “A” of sequence III (position 1). If our
logic were transitive, this would imply that position 4 of sequence I would
correspond to position 1 of sequence III. It does not. Position 1 of sequence 111
(“A™) cormresponds fo position 4 of sequence I (also “A”). No circle of
correspondence can be drawn among these nucleotides describing state
transformations. They are not homologous (Fig. 7).

©0,0,00 ..

0,0, .

?

I AAATTT 1, AAATIT AAATTT
L) TTT /
O 11T H/ AAA TIT
T TTT *
Il aAA III, AAATTT AAA
AAA

Length = Minimum 2,2,2...

FIGURE 6 An example of down-pass cladogram optimization via the fixed-state approach.

FIGURE 7 Scheme of base correspondences implied by the fixed-state approach.
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Two other aspects of this approach affect ideas of homology. One of the
salient features of base-to-base methods, whether built upon static or dynamic
homologies, is difficulty in tracing complex homologies through the cladogram
(or alignment)—in other words, messy data. When there is extensive sequence
length variation coupled with base changes, tremendous uncertainty in homology
can occur in both multiple-alignment and optimization alignment. The
requirement that such variation be accommodated over the entire cladogram can
make local uncertainties propagate throughout the analysis. Since the sequence
level homology approach transforms the complex states with their variations in
length and nucleotide base composition into simple numbered states with
pairwise costs, this problem does not occur. Such seemingly confusing variation
patterns will certainly lead to longer cladograms, but the homologies (at the
fragment level} will remain clear.

A second feature of fragment level homology is the requirement that the
character homologies be defined a priori. Whether entire loci, structurally or
functionally defined regions are employed as homologies, they are determined by
the mvestigator. This is akin to the delimitation of variation in complex
morphological features. Are complex structures such as complete development
in the endopterygote insects single or multiple characters? As with all such
seemingly arbitrary decisions, what matters most is the effect of changing these
character delimitations on phylogenetic resuls.

The notion of synapomorphy as a shared derived feature might also seem to
be altered by the homology concept implicit in sequence fragment comparisons.
Since each taxon may well express a unique character state, it might appear that
synapomorphy (as a shared state) would be impossible. This criticism would
only apply if the characters were completely wnordered. State transformation
costs are not equal among states, hence are more akin to synapomorphy in the
context of ordered characters. Two taxa might present states 1 and 2 of an
ordered series 0 — 1 — 2. These taxa are united by the transformation implied
by the ordering with 1 and 2 sharing special derived similarity not found in 0
(Platnick, 1979). The concept of synapomorphy (or Homology) is unaffected by
the fixed-state approach.

COMPARISONS

For these distinctions (static versus dynamic; base-to-base versus fragment)
to be anything more than nomenclature, some means of comparing these methods
and judging superiority must be offered. Congruence could be that measure.
When analyzing single data sets, via whatever method, the best solution is that
which minimized discord among data (i.e., characters). This may be measured by
simplicity (parsimony) or with respect to complex statistical models (likelihood).
The three methods of viewing homology here define characters in somewhat
different ways, hence simple counting of change for single data sets (ie.,
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cladogram length) cannot be used. The things that are counted are just not the
same. This notion of character congruence, however, can be extended to the
broader concept of congruence among data sets. Character congruence has been
used to discriminate among analysis parameters (Wheeler, 1995; ‘Whiting ef al.,
1997: Wheeler and Hayashi, 1998) and could reasonably be used to compare the
behavior of methods (although numerous other means could also be employed).
Two types of congruence measures can be used: character based and
topological. The relative merits and demerifs qf these approaches have been
explored in the literature (Mickevich and Fams,’ 19&_31; Wheeler, '1995) and
character congruence will be used here due to iis link with parsimony and
combined data analysis. Phylogenetic methods are judged to be superior if they
accommodate variation in multiple data sets efficiently as measured by the
Mickevich-Farris incongruence length metric (Mickevich and Farris, 1981).

. EXAMPLE—ARTHROPODS

In order to compare these three homology-determination met_hods, the
arthropod data of Wheeler ef al. (1993) are used. 'I?lese data consist qf I‘O_O
morphological characters, ~650 185 tDNA nucleotides, and 228 Ubiquitin
aucleotides. To these data ~350 28S rDNA nucleotides were added. The I.SS
and Ubiquitin data were determined for 25 extant taxa and the morphological
data scored for these taxa and “Trilobita,” an extinct clade. The 288 rDNA data
were determined for 15 of the extant taxa (Table I).

TABLE !l Taxon List

Mollusca . ) _
Cephalopoda Loligo pealei
Polyplacophora  Lepidochiton cavernae
Annelida
Polycheata Glycera sp.
Oligocheata Lumbricus terrestris
Hirudinea Haemopis marmorata
Ounychophora o
Peripatoidae Peripatus trinitatis
i 1 i, i landia
Peripatopsidac Peripatoides novozea
Trilobita i groundplan of Ramskold and Edgecombe, 1991.
(morphological analysis only)
Chelicerata
Pycnogonida Anoplodactylus partus
Kiphosura Linndus polyphemus
Scorpiones Centruroides hentzii
Uropygi Mastogoproctus giganteus
Araneae Nephila clavipes
Araneae Peucetia viridans
Crustacea
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Cirrepedia Balanus sp.
Malacostraca Callinectes sp.

Myriapoda
Chilopoda Scutigera coleoptrata

) Diplopoda Spirebolus sp.

Hexapoda
Zygentoma Thermobius sp.
Ephemerida Hepragenia sp.
Odonata Libellula puichella
Odonata Dorocordulia lepida
Dictyoptera Mantis religiosa
Auchenorchyncha Tibicen sp.
Lepidoptera - Papilio sp.
Diptera Drosophila melanogaster

Three analyses were performed. In each case, the insertion-deletion cost was
set at two and all base substitutions set at one. When morphological characters
were used, character transformations were set at two. In the first analysis, the
data were aligned (via MALIGN; Wheeler and Gladstein, 1994) and
phylogenetic analysis was performed using PHAST (Goloboff, 1996). The
second analysis employed optimization-alignment as implemented in POY
(Gladstemn and Wheeler, 1996). The third used the fixed-state optimization
technique also as implemented in POY. Gaps/indels were included and given the
same weight (2) in all length calculations. All searches employed TBR branch
swapping and 10 random addition sequences. The results of the individual data
partitions, combined results, and congruence calculations are summarized in
Table II and Figs. 8-10. '

TABLE Il Comparison of Methodofogies

Data Alignment Method Fixed-state
' Optimization-alignment

185 IDNA 503 501 584
Ubiquitin 387 ) 392 484

288 rDNA 919 848 943
Morphology 252% 252 252
Combined 2123 2007 271
Incongruence’ 0.0292 0.00698 0.00352

! This length of 387 steps is shorter than that of the optimization-alignment purely due to the treatment
of ambiguities. When all ambiguities are treated as missing data, both alignment (MALIGN-PHAST)
and oplimization-alignment (POY) yield the same length of 387 steps.

2 This length is 2 times the length of 126 steps.

? Calculated as (Combined — 18S rDNA — Ubiquitin — 285 rDNA — Morphology)/Combined.
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Trilobita
Anoplodaciylus
Limulus
Centruroides
Maslogoprocius
Peucetia
Nephila
Callinectes
Balanus )
Scutigera
Spirobolus
Thermobius
Heptagenia
Dorocordulia
Libellula
Mantis
Tibicen
Papitio
Drosaphila

FIGURE 8 Morphologically based cladegram of arthropod relationships {Wheeler et al., 1993).

The dynamic homology approach of optimization-alignment resulted in
more parsimonious cladograms in all the cases where sequences were unequal in
length. This is due, no doubt, to the simultaneous optimization of synapomorphy
and homology uniquely for each topology. The cladograms derived from the
fixed-state approach were the longest. The restriction on the possible range of
internal node (HTU) sequences is rosponsible for this. Since internal node
sequences are chosen from the range of observed terminal sequences, longer
cladograms frequently arise (Wheeler, 1999). Overall character incongruence
was lowest {0.00352 vs. 0.00698 and 0.0292) for the fixed-state analysis.
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FIGURE 9  Cladograms of individual data partitions when subjected to different analyt
techmiques. A. 18S rDNA and multiple sequence alignment. B. 18§ rDNA and optimizatit
alignment. C. 188 rDNA and fixed-state optimization. D. 285 rDNA and multiple seq e
alignment. E. 285 rDNA and optimization-alignment. F. 285 rDNA and fixed-state optimization. 3
Ubiquitint and multiple sequence alignment. H. Ubiquitin and optimization-alignment. L Ubig
and fixed-state oplimization,

FIGURE 10 Cladograms of combined data (185 rDNA, Ubiquitin, 285 rDNA, morphology) for
ropod taxa when subjected to different analytical techniques. A. Multiple sequence alignment. B.
plimization-aligement. C. Fixed-state optimization.
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-w W. C. (1999). Fixed character staies and the optimization of molecular scquence data.
Cladistics 15:379-383. .
ler, W. C. (1996) Optimization alignment: thc end of multiple sequence alignment in
phylogentics? Cladistics 12:1-10.
. : FRT : ler, W. C. (1995). Sequence alignment, paramcier scnsitivity, and the phylogentic analysis of
Clearl ¢ : ¥ i ; :
y, the way we view sequence homology has tremendous implicatiol molecular data. Syst. Biol. 44:321-332.

for the elucidation of phylogenetic pattern. The three modes discussed he hecler, W. C., and Gladstein. D. S. (1994). MALIGN: A multiple scquence alignment program. J.
(static, dynamic, and fragment level) imply different patterns of relationship Hered. 85:417.
the small test case used here. Furthermore, since the reconstructions er, W. C., and Gladstein, D. M, (1992-1996). Malign: A Muliiple Sequence Alignment
hypothetical ancestral sequences vary with the method, the types of evolutio f‘l‘!’bg;m“l I; m!/%m? and Documentation. ~ New York, NY.  available fip.amnh.org
events reconstructed on these patterns differ as well. . /pub/moecularima 1%“ . : . ) . -
An additional feature of the base-to-base methods, the nonindependence }ﬁlmelz 1\%-](.'92 .and Hayashi, C. Y. (1998). The phylogeny of the chelicerate orders. Cladistics
the nucleotide characters, remains largely unexplored. In both alignment an celer, W. C., Cartwright, P., and Hayashi, C. (1993). Arthropod phylogenetics: a tolal evidence
optimization-alignment, the homology scheme for each nucleotide is determin approach. Cladistics 9:1-39.
in concert with all the other bases that surround it. The relative position an ifing, M. F., Carpenter, J. C., Wheeler, Q. D., and Whecler, W. C. (1997). The Strepsiptera
number of indels and nucleotide substitutions in adjacent sequence positions problen: phylogeny of the holomelabolo?s insect orders inferred from 18S and 28S ribosomal
fundamentally affect positional homology. Clearly, such character statements DNA soquences and morphology. Sys. Biol. 46:1-68.
not independent. However, when cladograms are constructed, the cost
changes and indels are summed linearly over the data—an assumption of rig]
character independence. Since the individual bases play no role in homolo
with the fixed-state approach, this character dependence problem vanishes.
indels and base substitutions only determine the cost of transformation betweg
states, there is no requirement that these changes be independent.
inconsistency of base-to-base homology is avoided.
With character incongruence levels at half or lower levels than the oth
techniques and character nonindependence removed, the fixed-state approach
sequence homology is clearly worth consideration.

DISCUSSION
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